Gustavsson, University of Uppsala, for the data processing.

The Swedish Natural Science Research Council gave financial support which is gratefully acknowledged.

References

Abrahams, S. C. \& Keve, E. T. (1971). Acta Cryst. A27, 157-165.
Albertsson, J., Oskarsson, Å., Ståhl, K., Svensson, C. \& Ymén, I. (1980). Acta Cryst. B36, 3072-3078.
Bacon, G. E. (1972). Acta Cryst. A28, 357-358.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Ferraris, G. \& Franchini-Angela, M. (1972). Acta Cryst. B28, 3572-3583.
Hamilton, W. C. \& Abrahams, S. C. (1972). Acta Cryst. A28, 215-219.

Hamilton, W. C. \& Ibers, J. A. (1968). In Hydrogen Bonding in Solids. New York: Benjamin.
Kuchitsu, K. (1966). J. Chem. Phys. 44, 906-911.
Kuchitsu, K. (1971). Bull. Chem. Soc. Jpn, 44, 96-99.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-584.
Lisensky, K. \& Levy, H. A. (1978). Acta Cryst. B34, 1975-1977.
Manoulović-Muir, L. (1975). Acta Cryst. B31, 135-139.
Mereiter, K., Preisinger, A. \& Guth, H. (1979). Acta Cryst. B35, 19-25.
Preisinger, A., Mereiter, K., Baumgartner, O., Heger, G., Mikenda, W. \& Steidl, H. (1980). Private communication.
Tellgren, R. (1975). Thesis, Univ. of Uppsala.
Van Roey, P. \& Kerr, K. A. (1981a). Acta Cryst. B37, 1244-1248.
Van Roey, P. \& Kerr, K. A. (1981b). Acta Cryst. B37, 1679-1685.

Di- μ-nitrosyl-trans-bis[bis(acetylacetonato)ruthenium] $(\boldsymbol{R u} \boldsymbol{R} \boldsymbol{R u})$

By Frank Bottomley and Peter S. White
Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada E3B $6 E 2$
and Masao Mukaida
Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-Ku, Tokyo, Japan

(Received 18 February 1982; accepted 1 May 1982)

Abstract

Ru}\left(\mathrm{CH}_{3} \mathrm{COCHCOCH}_{3}\right)_{2}\right\}_{2}(\mu-\mathrm{NO})_{2}\right]\), triclinic, $P \overline{1}, a=10.853(3), b=12.115(3), c=$ 9.931 (3) $\AA, \quad \alpha=89.29$ (2), $\beta=97.17(2), \gamma=$ $82.91(2)^{\circ}, D_{c}=1.70, D_{m}=1.70 \mathrm{Mg} \mathrm{m}^{-3}, Z=2$, Mo $K \alpha$ radiation $\left(\lambda=0.71069 \AA\right.$), $\mu=1.20 \mathrm{~mm}^{-1}, 3107$ reflections with $I>3 \sigma(I), R=0.040, R_{w}=0.069$. Two cis-[Ru(acac) $\left.{ }_{2}\right]$ (acac $=$ acetylacetonato) fragments are connected by a double $\mu-\mathrm{N}(\mathrm{O})$ bridge so that each Ru is octahedrally coordinated by four O and two N atoms. The $\mathrm{Ru}(\mu-\mathrm{NO})_{2} \mathrm{Ru}$ unit is planar and the $\left[\mathrm{Ru}(\mathrm{acac})_{2}\right.$] fragments are trans to one another, giving effective D_{2} symmetry to the dimer. The Ru-O distances average 2.031 (24) $\AA, \mathrm{Ru}-\mathrm{N} 1.918$ (3) \AA. The latter distance is indicative of delocalized π bonding over the $\mathrm{Ru}(\mu-\mathrm{NO})_{2} \mathrm{Ru}$ unit. The $\mathrm{Ru}-\mathrm{Ru}$ distance is 2.614 (1) \AA, the shortest distance yet reported for an apparently single $\mathrm{Ru}-\mathrm{Ru}$ bond.

Introduction. One of us recently obtained an oligomeric ruthenium nitrosyl of empirical formula $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{NO})\right]_{n}(\mathrm{acac}=$ acetylacetonato, $n=2$ or 4$)$ apparently containing bridging nitrosyl groups (Mukaida, Nomura \& Ishimori, 1975). Because of the
stability of the $\{\mathrm{RuNO}\}^{6}$ unit bridging nitrosyls are very rare in ruthenium chemistry (Bottomley, 1978), being so far confined to two trimeric clusters, $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mu \text {-NO) })_{2}\right]$ (Norton, Collman, Dolcetti \& Robinson, 1972) and $\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{7}\left\{\mathrm{PO}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{3}(\mu-\mathrm{H})(\mu\right.$ NO)] (Johnson, Raithby \& Zuccaro, 1980). In view of the unusual nature of $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{NO})\right]_{n}$ we have investigated it crystallographically and shown it to be $\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}_{2}(\mu-\mathrm{NO})_{2}\right.$], this formulation being one of those previously suggested (Mukaida et al., 1975).

Examination of Weissenberg and precession photographs revealed no systematic absences or symmetry elements. Successful refinement was accomplished in $P \overline{1}$. The crystal used for the intensity determination was $0.58 \times 0.42 \times 0.33 \mathrm{~mm}$. Intensities of 3345 independent reflections ($2 \theta<45^{\circ}$) were measured using graphite-monochromatized Mo $K \alpha$ radiation on a Picker FACS-1 diffractometer, of which 3107 were considered to be observed $[I>3 \sigma(I)]$. These were corrected for absorption (transmission factors ranged from 0.52 to 0.68). Initial atomic coordinates for ruthenium were obtained using the MULTAN procedure (Main, Woolfson \& Germain, 1971) and the
structure solved subsequently by standard Fourier and difference Fourier syntheses. Refinement, with anisotropic thermal parameters for all atoms except H, using the program suite of Larson \& Gabe (1978) converged at $R_{1}\left[=\left(\sum|\Delta F| / \sum\left|F_{o}\right|\right)\right]=0 \cdot 040, R_{2}\left[=\left(\sum w|\Delta F|^{2} /\right.\right.$ $\left.\left.\sum w\left|F_{o}\right|^{2}\right)^{1 / 2}\right]=0 \cdot 069$. The same functions including unobserved were $R_{1}^{\prime}=0.043$ and $R_{2}^{\prime}=0.073$. There were 420 variables and the function minimized was $\sum w(\Delta F)^{2}$, with $w=1 /\left[\sigma^{2}(|F|)+0.005(|F|)^{2}\right]$. A final difference Fourier synthesis had a highest positive peak of 0.87 e \AA^{-3} and a lowest negative of $-0.67 \mathrm{e}^{-3}$. The scattering factors were taken from Cromer \& Waber (1974), those for ruthenium being corrected for anomalous dispersion (Cromer \& Ibers, 1974). The

Table 1. Atomic coordinates and isotropic thermal parameters of the non -H atoms

	x	y	z	$B_{\text {iso }}{ }^{*}\left(\AA^{2}\right)$
$\mathrm{Ru}(1)$	0.23393 (2)	0.75005 (2)	$0 \cdot 33062$ (3)	$3 \cdot 309$ (12)
$\mathrm{Ru}(2)$	-0.00485 (2)	0.75162 (2)	$0 \cdot 24920$ (2)	3.066 (12)
N(1)	0.0866 (2)	0.7881 (2)	0.4177 (3)	$3 \cdot 13$ (12)
$\mathrm{O}(2)$	0.0637 (2)	0.8213 (2)	0.5225 (2)	4.68 (13)
$\mathrm{N}(3)$	0.1417 (2)	0.7161 (2)	0.1619 (3)	3.05 (12)
$\mathrm{O}(4)$	$0 \cdot 1655$ (2)	0.6884 (2)	0.0539 (2)	$4 \cdot 64$ (13)
$\mathrm{O}(11)$	0.2304 (2)	0.9119 (2)	0.2712 (2)	4.45 (12)
C(12)	0.2736 (5)	1.0618 (4)	0.1476 (5)	6.74 (27)
C(13)	0.3012 (4)	0.9433 (3)	0.1913 (4)	4.94 (20)
C(14)	0.3991 (4)	0.8797 (4)	0.1426 (4)	$5 \cdot 81$ (24)
$\mathrm{C}(15)$	0.4448 (4)	0.7719 (4)	0.1751 (4)	$5 \cdot 29$ (26)
$\mathrm{C}(16)$	0.5585 (4)	0.7202 (5)	$0 \cdot 1208$ (5)	$7 \cdot 37$ (36)
$\bigcirc(17)$	0.3978 (2)	0.7071 (2)	0.2534 (3)	4.66 (13)
$\mathrm{O}(21)$	0.3433 (2)	0.7887 (2)	0.5018 (3)	4.86 (13)
C(22)	0.4597 (5)	0.7678 (5)	0.7125 (5)	7.43 (38)
C(23)	0.3874 (3)	0.7178 (3)	0.5970 (4)	4.45 (20)
C(24)	0.3773 (4)	0.6055 (4)	0.5970 (4)	5.34 (24)
C(25)	$0 \cdot 3157$ (3)	0.5466 (3)	0.4968 (4)	4.22 (18)
C(26)	$0 \cdot 3180$ (4)	0.4232 (3)	0.5147 (5)	5.77 (26)
$\mathrm{O}(27)$	0.2538 (2)	0.5880 (2)	0.3877 (2)	3.98 (11)
$\mathrm{O}(31)$	-0.0248 (2)	0.9100 (2)	0.1740 (2)	3.68 (11)
C(32)	-0.0941 (4)	1.0993 (3)	0.1472 (4)	$5 \cdot 60$ (25)
C(33)	-0.1009 (3)	0.9872 (3)	0.2096 (3)	3.55 (15)
C(34)	-0.1884 (4)	0.9779 (3)	$0 \cdot 2988$ (4)	4.41 (18)
C(35)	-0.2166 (3)	0.8810 (3)	0.3538 (4)	4.18 (17)
C(36)	-0.3180 (4)	0.8858 (4)	0.4437 (5)	$6 \cdot 33$ (25)
O(37)	-0.1654 (2)	0.7822 (2)	0.3365 (2)	4.20 (12)
$\mathrm{O}(41)$	-0.1140 (2)	0.7207 (2)	0.0744 (2)	$3 \cdot 89$ (11)
C(42)	-0.2104 (4)	0.6154 (3)	-0.0932 (4)	4.92 (21)
C(43)	-0.1439 (3)	0.6254 (3)	0.0447 (3)	3.49 (16)
C(44)	-0.1199 (3)	0.5316 (3)	0.1281 (4)	4.27 (18)
$\mathrm{C}(45)$	-0.0548 (3)	0.5195 (3)	0.2564 (3)	3.49 (16)
C(46)	-0.0424 (4)	0.4105 (3)	0.3305 (4)	4.80 (20)
$\mathrm{O}(47)$	-0.0034 (2)	$0 \cdot 5950$ (2)	$0 \cdot 3210$ (2)	$3 \cdot 65$ (11)

${ }^{*} B_{i, w}$ is defined as the arithmetic mean of the principal axes of the thermal ellipsoid.

Table 2. Selected bond distances (\AA)

$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.6143(9)$	$\mathrm{Ru}(2)-\mathrm{N}(3)$	$1.910(3)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$1.921(3)$	$\mathrm{Ru}(2)-\mathrm{O}(31)$	$2.0268(21)$
$\mathrm{Ru}(1)-\mathrm{N}(3)$	$1.918(3)$	$\mathrm{Ru}(2)-\mathrm{O}(37)$	$2.0373(24)$
$\mathrm{Ru}(1)-\mathrm{O}(11)$	$2.0349(23)$	$\mathrm{Ru}(2)-\mathrm{O}(41)$	$2.0421(23)$
$\mathrm{Ru}(1)-\mathrm{O}(17)$	$2.035(3)$	$\mathrm{Ru}(2)-\mathrm{O}(47)$	$2.0160(20)$
$\mathrm{Ru}(1)-\mathrm{O}(21)$	$2.0420(25)$	$\mathrm{N}(1)-\mathrm{O}(2)$	$1.165(3)$
$\mathrm{Ru}(1)-\mathrm{O}(27)$	$2.0149(23)$	$\mathrm{N}(3)-\mathrm{O}(4)$	$1.178(3)$
$\mathrm{Ru}(2)-\mathrm{N}(1)$	$1.922(3)$		

$\mathrm{N}(1)-\mathrm{Ru} u(1)-\mathrm{N}(3)$	$93.94(11)$	$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{Ru}(2)$	$85.74(10)$
$\mathrm{N}(1)-\mathrm{Ru}(2)-\mathrm{N}(3)$	$94.16(11)$	$\mathrm{Ru}(1)-\mathrm{N}(3)-\mathrm{Ru}(2)$	$86.14(11)$
$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{O}(2)$	$136.9(2)$	$\mathrm{Ru}(1)-\mathrm{N}(3)-\mathrm{O}(4)$	$136.4(2)$
$\mathrm{Ru}(2)-\mathrm{N}(1)-\mathrm{O}(2)$	$137.3(2)$	$\mathrm{Ru}(2)-\mathrm{N}(3)-\mathrm{O}(4)$	$137.4(2)$
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{O}(11)$	$90.46(11)$	$\mathrm{N}(1)-\mathrm{Ru}(2)-\mathrm{O}(31)$	$93.23(10)$
$\mathrm{N}(1)-\mathrm{Ru} u(1)-\mathrm{O}(21)$	$90.15(11)$	$\mathrm{N}(1)-\mathrm{Ru}(2)-\mathrm{O}(37)$	$88.48(10)$
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{O}(27)$	$94.25(10)$	$\mathrm{N}(1)-\mathrm{Ru}(2)-\mathrm{O}(47)$	$89.82(10)$
$\mathrm{N}(3)-\mathrm{Ru}(1)-\mathrm{O}(11)$	$92.06(10)$	$\mathrm{N}(3)-\mathrm{Ru}(2)-\mathrm{O}(31)$	$90.41(10)$
$\mathrm{N}(3)-\mathrm{Ru}(1)-\mathrm{O}(17)$	$90.26(11)$	$\mathrm{N}(3)-\mathrm{Ru}(2)-\mathrm{O}(41)$	$89.97(11)$
$\mathrm{N}(3)-\mathrm{Ru}(1)-\mathrm{O}(27)$	$89.58(0)$	$\mathrm{N}(3)-\mathrm{Ru}(2)-\mathrm{O}(47)$	$94.04(10)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(17)$	$91.23(11)$	$\mathrm{O}(31)-\mathrm{Ru}(2)-\mathrm{O}(37)$	$91.43(10)$
$\mathrm{O}(11)-\mathrm{Ru}(1)-\mathrm{O}(21)$	$86.01(10)$	$\mathrm{O}(31)-\mathrm{Ru}(2)-\mathrm{O}(41)$	$84.91(9)$
$\mathrm{O}(17)-\mathrm{Ru}(1)-\mathrm{O}(21)$	$85.71(10)$	$\mathrm{O}(37)-\mathrm{Ru}(2)-\mathrm{O}(41)$	$87.46(10)$
$\mathrm{O}(17)-\mathrm{Ru}(1)-\mathrm{O}(27)$	$83.93(10)$	$\mathrm{O}(37)-\mathrm{Ru}(2)-\mathrm{O}(47)$	$83.96(10)$
$\mathrm{O}(21)-\mathrm{Ru} u(1)-\mathrm{O}(27)$	$91.99(10)$	$\mathrm{O}(41)-\mathrm{Ru}(2)-\mathrm{O}(47)$	$91.70(9)$

Fig. 1. Molecular architecture of $\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}_{2}(\mu-\mathrm{NO})_{2}\right]$, showing the numbering scheme for the inner coordination sphere.
final atomic coordinates for the non- H atoms are given in Table 1, and a selection of important bond distances and angles in Tables 2 and 3.* The numbering scheme is given in Fig. 1.

Discussion. The crystals of $\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}_{2}(\mu-\mathrm{NO})_{2}\right]$ consist of well separated molecular units of the dimeric molecule, the shortest non-bonded contact being 2.34 (9) \AA between H atoms of CH_{3} groups on the acetylacetonato ligand. From the distances and angles in Tables 2 and 3 it is seen that each ruthenium is approximately octahedrally coordinated by the four O atoms of two cis-(acetylacetonato) ligands and the N atoms of the nitrosyl bridges. The angles between the mean planes defining the octahedra have maximum deviations of $\pm 2.8(1)^{\circ}$ from 90°. The acetylacetonato ligands in the two halves of the dimer are arranged in a trans relationship to each other, so that the effective symmetry is D_{2} within experimental error. The $\mathrm{Ru}-\mathrm{O}$

[^0]distances to the acetylacetonato ligands average 2.031 (24) \AA. It is difficult to compare this average distance to other $\mathrm{Ru}-\mathrm{O}$ distances because if the nitrosyl group is regarded as a three-electron donor the formal oxidation state of the ruthenium is I which is very rare. The only $\mathrm{Ru}^{1}-\mathrm{O}$ distance in the literature appears to be the $2 \cdot 13$ (1) \AA observed in $\left[\left\{\mathrm{Ru}(\mathrm{CO})_{2}\right\}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\left\{\mathrm{P}(\text { tert }-\mathrm{Bu})_{3}\right\}_{2}\right]$
(Schumann, Opitz \& Pickardt, 1977). In [Ru(acac) ${ }_{3}$] the $\mathrm{Ru}-\mathrm{O}$ distances average 2.00 (2) \AA (Chau, Sime \& Sime, 1973). The $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ distances and all angles in the acetylacetonato ligand are normal.
The $\mathrm{Ru}(\mu-\mathrm{NO})_{2} \mathrm{Ru}$ unit is approximately planar with deviations within ± 0.021 (2) \AA from the mean plane. The $\mathrm{Ru}-\mathrm{N}$ distances average 1.918 (3) \AA. Again, detailed comparison with other $\mathrm{Ru}-\mathrm{N}$ distances is difficult. The distance is considerably longer than the $\mathrm{Ru}-\mathrm{NO}$ distance observed in $\{\mathrm{RuNO}\}^{6}$ complexes \{e.g. in trans- $\left[\mathrm{Ru}(\mathrm{OH})\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{NO})\right] \mathrm{Cl}_{2}, \quad \mathrm{Ru}-\mathrm{N}$ is 1.735 (3) \AA \} but shorter than a simple $\mathrm{Ru}-\mathrm{N}$ single bond [in the same nitrosyl the average $\mathrm{Ru}-\mathrm{NH}_{3}$ distance is $2 \cdot 102$ (3) \AA (Bottomley, 1974)]. It can be concluded that some double-bond character is present in the $\mathrm{Ru}(\mu-\mathrm{NO})_{2} \mathrm{Ru}$ plane. In the other two known nitrosyl-bridged dimers of ruthenium the average $\mathrm{Ru}-\mathrm{N}$ distance is longer than in $\left\{\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}_{2}(\mu-\right.$ $\left.\mathrm{NO})_{2}\right]$, being 1.981 (7) \AA in $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{7}\left\{\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right\}_{3}(\mu-\right.$ $\mathrm{H})(\mu$-NO) (Johnson et al., 1980) and 2.03 (1) \AA in $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mu-\mathrm{NO})_{2}\right]$ (Norton et al., 1972). However, these distances are associated with longer $\mathrm{Ru}-\mathrm{Ru}$ distances, $2 \cdot 816(2)$ and $3 \cdot 150$ (1) \AA respectively The relationship between the $\mathrm{Ru}-\mathrm{N}$ and $\mathrm{Ru}-\mathrm{Ru}$ bond distances is discussed elsewhere (Bottomley, 1982). The $\mathrm{N}-\mathrm{O}$ distances [1.165 (3) and 1.178 (3) \AA] are in the range usually observed for bridging nitrosyls (Johnson et al., 1980).

The most striking feature of the structure of $\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}_{2}(\mu-\mathrm{NO})_{2}\right]$ is the $\mathrm{Ru}-\mathrm{Ru}$ bond distance of 2.614 (1) \AA. If $\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}_{2}(\mu-\mathrm{NO})_{2}\right]$ is considered as being of general formula $\left[\left(L_{4} M\right)_{2}(\mu-A B)_{2}\right]$, where L is a unidentate or one-electron-pair donor from a polydentate ligand and $A B$ is a π-acceptor molecule, then it may be compared to trans-[\{Cp(CO)Ru\} $\left.\mathbf{2}_{2}(\mu-\mathrm{CO})_{2}\right]$ $[\mathrm{Ru}-\mathrm{Ru} 2.735$ (2) \AA (Mills \& Nice, 1967)], cis$\left[\{\mathrm{Cp}(\mathrm{CO}) \mathrm{Ru}\}_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{C}=\mathrm{CH}_{2}\right)\right] \quad \mid \mathrm{Ru}-\mathrm{Ru} \quad 2.695$ (1) $\AA\}$ and $c i s-\left\{\langle\mathrm{Cp}(\mathrm{CO}) \mathrm{Ru}\rangle_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{CCH}_{3}\right)| | \mathrm{Ru}-\right.$ Ru 2.714 (1) \AA, both from Davies, Dyke, Endesfelder, Knox, Naish, Orpen, Plaas \& Taylor (1980)|. It is seen that the $\mathrm{Ru}-\mathrm{Ru}$ distance in the present dimer is $0.1 \AA$ shorter than these values, which have been considered as single-bond distances. Complexes of general formula $\left[\left(L_{3} \mathrm{Ru}\right)_{2}(\mu-X)_{2}\right]$ where X is a π-donor ligand have $\mathrm{Ru}-\mathrm{Ru}$ distances of 2.65-2.72 \AA (Schumann, Opitz \& Pickardt, 1977, 1980; Mason, Thomas, Gill \& Shaw, 1972), and are also generally considered to have an $\mathrm{Ru}-\mathrm{Ru}$ single bond. A double bond is proposed in $\left\{\{\mathrm{Ru}(\mathrm{NO})\}_{2}\left\{\mathrm{P}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right\}_{2}\left\{\mu-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right\}_{2}\right\}$ for
which the $\mathrm{Ru}-\mathrm{Ru}$ distance is $2 \cdot 629$ (2) \AA (Reed, Schultz, Pierpont \& Eisenberg, 1973), and the Ru-Ru distances of $2 \cdot 25-2.62 \AA$ in the tetracarboxylate dimers of ruthenium have been interpreted in terms of bond orders of 2-3 (Bino, Cotton \& Felthouse, 1979; Warren \& Goedken, 1978; Bennett, Caulton \& Cotton, 1969; Togano, Mukaida \& Nomura, 1980; Mukaida, 1982). It is clear that the $\mathrm{Ru}-\mathrm{Ru}$ distance in $\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\rangle_{2}(\mu-\mathrm{NO})_{2}\right]$ is very short, particularly if it is considered to represent a single bond. We will present a theoretical approach to the metal-metal bonds in $\left\lceil\left(L_{3} M\right)_{2}(\mu-A B)_{2}\right]$ and $\left[\left(L_{4} M\right)_{2}(\mu-A B)_{2}\right.$] dimers elsewhere (Bottomley, 1982).

References

Bennett, M. J., Caulton, K. G. \& Cotton, F. A. (1969). Inorg. Chem. 8, 1-6.
Bino, A., Cotton, F. A. \& Felthouse, T. R. (1979). Inorg. Chem. 18, 2599-2604.
Воттомley, F. (1974). J. Chem. Soc. Dalton Trans. pp. 1600-1605.
Bottomley, F. (1978). Coord. Chem. Rev. 26, 7-32.
Bottomley, F. (1982). Inorg. Chem. Submitted.
Chau, G. K.-J., Sime, R. L. \& Sime, R. J. (1973). Acta Cryst. B29, 2845-2849.
Cromer, D. T. \& Ibers, J. A. (1974). International Tables for X-ray Crystallography, Vol. IV, p. 148. Birmingham: Kynoch Press.
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol IV, p. 99. Birmingham: Kynoch Press.
Davies, D. L., Dyke, A. F., Endesfelder, A., Knox, S. A. R., Naish, P. J., Orpen, A. G., Plaas, D. \& Taylor, G. E. (1980). J. Organomet. Chem. 198, C43-C49.

Johnson, B. F. G., Raithby, P. R. \& Zuccaro, C. (1980). J. Chem. Soc. Dalton Trans. pp. 99-104.

Larson, A. C. \& Gabe, E. J. (1978). Computing in Crystallography, edited by H. Schenk, R. OlthofHazekamp, H. van Koningsveld \& G. C. Bassi, pp. 81-89. Delft Univ. Press.
Main, P., Woolfson, M. M. \& Germain, G. (1971). Acta Cryst. A27, 368-376.
Mason, R., Thomas, K. M., Gill, D. F. \& Shaw, B. L. (1972). J. Organomet. Chem. 40, C67-C69.

Mills, O. S. \& Nice, J. P. (1967). J. Organomet. Chem. 9, 339-344.
Mukaida, M. (1982). Bull. Chem. Soc. Jpn. Submitted.
Mukaida, M., Nomura, T. \& Ishimori, T. (1975). Bull. Chem. Soc. Jpn, 48, 1443-1446.
Norton, J. R., Collman, J. P., Dolcetti, G. \& Robinson, W. T. (1972). Inorg. Chem. 11. 382-388.

Reed, J., Schultz, A. J., Pierpont, C. G. \& Eisenberg, R. (1973). Inorg. Chem. 12, 2949-2954.

Schumann, H., Opitz, J. \& Pickardt, J. (1977). J. Organomet. Chem. 128, 253-264.
Schumann, H., Opitz, J. \& Pickardt, J. (1980). Chem. Ber. 113, 1385-1393.
Togano, T., Mukaida, M. \& Nomura, T. (1980). Bull. Chem. Soc. Jpn, 53, 2085-2086.
Warren, L. F. \& Goedken, V. L. (1978). J. Chem. Soc. Chem. Commun. pp. 909-910.

[^0]: * Tables of structure factors, H -atom positions and isotropic thermal parameters, anisotropic thermal parameters for non-H atoms, a complete list of bond angles and distances, a diagram with a full numbering scheme and the equations of a selection of important mean planes and distances of atoms from them have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36903 (32 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

